Effectiveness of Crop Recommendation and Yield Prediction using Hybrid Moth Flame Optimization with Machine Learning
نویسندگان
چکیده
Agriculture is the main source of income, food, employment, and livelihood for most rural people in India. Several crops can be destroyed yearly due to a lack technical skills changing weather patterns such as rainfall, temperature, other atmospheric parameters that play an enormous role determining crop yield profit. Therefore, selecting suitable increase essential aspect improving real-life farming scenarios. Anticipating one major concerns agriculture plays critical global, regional, field decision-making. Crop forecasting based on meteorological, atmospheric, soil conditions. This paper introduces recommendation prediction system using Hybrid Moth Flame Optimization with Machine Learning (HMFO-ML) model. The presented HMFO-ML method effectively recommends forecasts accurately promptly. proposed model used Probabilistic Neural Network (PNN) Extreme (ELM) process. HMFO algorithm was improve rate ELM approach. A wide-ranging simulation analysis carried out evaluate model, showing its advantages over models, it exhibited maximum R2 score 98.82% accuracy 99.67%.
منابع مشابه
Stock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملOptimal Reactive Power Dispatch Using Moth-Flame Optimization Algorithm
This paper describes a newly developed Moth-Flame optimization algorithm to deal with optimal reactive power dispatch problem. The prime intention of reactive power dispatch problem is to curtail the real power loss and control the bus voltages in power system network. The Moth-Flame algorithm is one of the most powerful and robust new global optimization algorithms in engineering. The primary ...
متن کاملthe relationship between using language learning strategies, learners’ optimism, educational status, duration of learning and demotivation
with the growth of more humanistic approaches towards teaching foreign languages, more emphasis has been put on learners’ feelings, emotions and individual differences. one of the issues in teaching and learning english as a foreign language is demotivation. the purpose of this study was to investigate the relationship between the components of language learning strategies, optimism, duration o...
15 صفحه اولeffect of seed priming and irrigation regimes on yield,yield components and quality of safflowers cultivars
این مطالعه در سال 1386-87 در آزمایشگاه و مزرعه پژوهشی دانشگاه صنعتی اصفهان به منظور تعیین مناسب ترین تیمار بذری و ارزیابی اثر پرایمینگ بر روی سه رقم گلرنگ تحت سه رژیم آبیاری انجام گرفت. برخی از مطالعات اثرات سودمند پرایمینگ بذر را بر روی گیاهان مختلف بررسی کرده اند اما در حال حاضر اطلاعات کمی در مورد خصوصیات مربوط به جوانه زنی، مراحل نموی، عملکرد و خصوصیات کمی و کیفی بذور تیمار شده ژنوتیپ های م...
Comparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering, Technology & Applied Science Research
سال: 2023
ISSN: ['1792-8036', '2241-4487']
DOI: https://doi.org/10.48084/etasr.6092